

Today's Discussion: CalSim & C2VSIM

- CalSim-III Development Goals
- Approach to integrating IWFM into CalSim
 - Required modifications in CalSim structure
 - Formulation of IWFM for purposes of CalSim
- Sensitivity of the IWFM budgets to parameterization
- Discussions on IWFM inputs to CalSim:
 - Surface (precipitation) runoff
 - Applied (crop) water requirements
 - Return flow from irrigation
 - Net deep percolation (precipitation/applied water)

Overall Goals for CalSim-III Hydrology Development Project

- Improve accessibility and documentation of CalSim
- Reduce development time for new hydrology inputs
- Disaggregate DSAs and associate demands with specific water sources

... related to C2VSim:

- Reconcile differences between C2VSIM and CalSim
- Improve accuracy of water supply estimates and water use efficiencies
- Represent groundwater with sufficient accuracy for preliminary conjunctive-use studies, in CalSim

Modular Integration of IWFM into CalSim-III

CalSim modifications for IDC

Assure 1-to-1 stream node correspondence

CalSim modifications for IDC

 Overlay areas for Surface Fluxes (Groundwater pumping & Net Deep Percolation)

IWFM specifications for CalSim-III

C2VSIM

- Monthly timestep
- Aggregate virtual crop for entire DSA
- Rice field operations are not represented

CalSim-III's IDC

- Mixed daily/monthly timestep (for precip.)
- Crop by crop representation for each Demand Unit
- Rice field operations are post-processed
- Differences in re-use

Sensitivity of IWFM Root Zone Budget to Parameter Selection

Starting Point

- 30 acres of Alfalfa
- 'Un-calibrated' parameters/inputs from Yuba Basin
 - Irrigation efficiency provided by DPLA data
 - DP assumed to be 13% of excess soil moisture
 - Re-use assumed to be zero
- Methods
 - Vary irrigation efficiency
 - Vary K ("physical" and "conceptual" parameters)
 - Vary % Re-use

Changes in Irrigation Efficiency

Physical K Values

Conceptual K Values

IWFM Demand Calculator (IDC)

Run 1

- Daily Timestep
- Outputs
 - Infiltration by crop & WBA for use in Run 2
 - Surface Runoff by Valley Watershed to DSS file

Run 2

- Monthly Timestep
- Input from Run 1
 - Infiltration Timeseries
- Outputs
 - Applied Water demand
 - Agricultural Returns
 - Deep Percolation

Surface Runoff

- Inflows from 'rim-watersheds' developed from direct or correlated gage data
- Surface runoff in the 'valleywatersheds' was modeled in IDC
 - Daily Precipitation developed using PRISM grid-averages
 - In IDC, rainfall depths were assumed uniform over each 'valley-watershed'
 - Textbook SCS curve numbers (CN) applied to land cover
 - Generalized soil characterization for valley watersheds

Surface Runoff Results

CalSim-III Demands with IDC

CalSim-III Demands

- CalSim demands previously estimated with DWR CU Model
- CalSim-III uses IDC to simulate root zone and output:
 - Applied water demand
 - Surface return flow
 - Deep percolation
 - Precipitation runoff

Output Post-Processors

- Reuse within demand units
- Rice operations
 - Irrigation season ponding
 - Rice straw decomposition
 - Modification to output:
 - Applied water demand
 - Surface return flow
 - Deep percolation

Demand Calibration

- IDC demands compared to historical diversion data
- Demands calibrated at demand unit level

Questions/Clarifications?

Questions/Clarifications?

CalSim-II Hydrologic Elements

- Demands →
 Calculated with CU Model
- Return Flows →
 Calculated with CU Model
- Deep Percolation → Estimated from CVGSM results
- Surface (Precipitation) Runoff →
 Lumped into Accretions / Depletions
- Unconfined Aquifer Storage >
 Simplified representation in CalSim

Varying % Re-Use

